Sustainable Consumption and Production is one of the leading principle towards reducing environmental impacts globally. This study aims at combining Environmentally-Extended Input-Output Analysis (using EXIOBASE 3) with up-to-date impact assessment models to quantify the environmental impacts induced by final consumption in the EU Member States in 2011. The environmental extensions are characterized in 14 environmental impact categories out of the 16 used in the Environmental Footprint life cycle impact assessment method. A contribution analysis of key products and services as well as emissions and resources, which drive the environmental impacts of EU consumption, is conducted. Environmental impacts are mainly induced along the supply-chain of products and services. Several expenditures relative to services represent large shares both in the total final consumption and in the 14 impacts under study, despite a relatively low impact intensity. Food products, in particular meat and dairy products, are identified as key contributors regarding acidification, eutrophication, land use, and water use, and to a lower extent climate change. Finally, several manufactured products, raw materials and basic products respectively importantly contribute to impacts on human toxicity, freshwater ecotoxicity and resource uses. The total volume of final consumption expenditures per EU Member State appears a key explanatory variable to most of the impacts embodied in their consumption, yet to a lower extent regarding water use and fossils resource use. Finally, the current limitations in using EXIOBASE 3 for environmental impact assessment are discussed, with specific attention to EXIOBASE environmental extensions and to the case study on EU consumption. Since the classification of emissions and resources for impact assessment requires a number of assumptions that may influence the results, a sensitivity analysis is performed to exemplify some of the key issues relative to the characterization of impacts based on EXIOBASE environmental extensions.
WP4 developed within FORWAST project intended to provide comprehensive and validated data on material flows for different economy sectors of the life cycle of resources to waste, in a perspective of broad coverage of the EU territory. The objectives of WP-4 were therefore to: Provide data related to resources and products flows for all the sectors of economy for the 23 member states, identifying specific of the each country or country group, Compile and validate data from different sources as well as to achieve the consistency of the obtained datasets, Identify needs for development of national statistics related to resources and wastes.
The objective of this report D4-1 is to document data collection, processing and validation for each of the EU-23 countries. The chapters from 1 to 23 provide a detailed overview of data mining and methodology used for creation of SUTs MASTERs for each of the EU-23 countries.
......
Each of the following chapters discussed the country-specific data mining and processing along the mentioned below aspects:
• Presentation of data availability and data processing,
• Identification of gaps and filling them by estimations,
• Construction of SUTs MASTER matrices,
• Validation process and adjustment to reach consistency of data.
Chapter 24 contains summary of conclusions from data mining and processing as well as construction of SUTs MASTERs for the EU-23 countries.
Slides available here: WW LCI_SETAC Nantes. Extended abstract available below.
Existing models for wastewater treatment in LCA reflect average conditions in wastewater treatment plants (WWTPs), rather than the specific fate of particular chemicals and they omit the impact of direct discharges. We present a model and tool to calculate life cycle inventories (LCIs) of chemicals in wastewater, WW LCI. It attributes the exchanges with the technosphere and the environment taking into account the expected behaviour of individual chemicals. The model covers treatment of organic and inorganic chemicals and the WWTP is modelled taking into account the partitioning of each chemical to air, sludge, treated effluent, and depending on its degradability, the transformation by microorganisms to CO2 and excess sludge. Sludge is treated by anaerobic digestion and the fate of any fraction of chemical released to the environment (e.g. treated effluent, direct discharges) is assessed in terms of greenhouse-gas (GHG) as well as nutrient (N, P) emissions following degradation in environmental compartments. Sludge disposal includes incineration, landfilling and agricultural reuse. The model is programmed in Excel and accommodates simultaneous calculations for 30 chemicals, either individually or as a mixture. The resulting LCIs can be automatically imported into the LCA software SimaPro.
The applicability of WW LCI is shown in a case study on three detergent formulations (powder, liquid, concentrate) including 28 chemical ingredients. The impact of these formulations is assessed for a functional unit of one wash, and the results are compared to those of the WWTP model developed for ecoinvent v2. The system boundaries include only the end-of-life stage, i.e. discharge of the three formulations after use in a washing machine, and the impact categories assessed are GHG emissions, freshwater and marine eutrophication and freshwater ecotoxicity.
The results show that, when assessed individually, the impact of some chemicals can be orders of magnitude different when assessed with the ecoinvent model and with WW LCI. When assessed as a mixture (detergent formulations), differences are lower between models and the ranking of formulations is not changed. The main advantages of WW LCI over the ecoinvent model are that it addresses the impacts from direct discharge, relevant for developing countries where connection to WWTPs is limited, and second that it provides a complete substance flow analysis of the assessed chemicals across all environmental impact categories.
Slides available here: WW LCI_SETAC Montpellier.
Slides available here: WW LCI_SETAC Brussels.
Extended abstract (below) and slides available here.
Environmentally extended multiregional input-output (EE MRIO) tables have emerged as a key framework to provide a comprehensive description of the global economy and analyze its effects on the environment. Of the available EE MRIO databases, EXIOBASE stands out as a database compatible with the System of Environmental-Economic Accounting (SEEA) with a high sectorial detail matched with multiple social and environmental satellite accounts. In this paper, we present the latest developments realized with EXIOBASE 3—a time series of EE MRIO tables ranging from 1995 to 2011 for 44 countries (28 EU member plus 16 major economies) and five rest of the world regions. EXIOBASE 3 builds upon the previous versions of EXIOBASE by using rectangular supply-use tables (SUTs) in a 163 industry by 200 products classification as the main building blocks. In order to capture structural changes, economic developments, as reported by national statistical agencies, were imposed on the available, disaggregated SUTs from EXIOBASE 2. These initial estimates were further refined by incorporating detailed data on energy, agricultural production, resource extraction, and bilateral trade. EXIOBASE 3 inherits the high level of environmental stressor detail from its precursor, with further improvement in the level of detail for resource extraction. To account for the expansion of the European Union (EU), EXIOBASE 3 was developed with the full EU28 country set (including the new member state Croatia). EXIOBASE 3 provides a unique tool for analyzing the dynamics of environmental pressures of economic activities over time.
We present a second-generation wastewater treatment inventory model, WW LCI 2.0, which on many fronts represents considerable advances compared to its previous version WW LCI 1.0. WW LCI 2.0 is a novel and complete wastewater inventory model integrating WW LCI 1.0, i.e. a complete life cycle inventory, including infrastructure requirement, energy consumption and auxiliary materials applied for the treatment of wastewater and disposal of sludge and SewageLCI, i.e. fate modelling of chemicals released to the sewer. The model is expanded to account for different wastewater treatment levels, i.e. primary, secondary and tertiary treatment, independent treatment by septic tanks and also direct discharge to natural waters. Sludge disposal by means of composting is added as a new option. The model also includes a database containing statistics on wastewater treatment levels and sludge disposal patterns in 56 countries. The application of the new model is demonstrated using five chemicals assumed discharged to wastewater systems in four different countries. WW LCI 2.0 model results shows that chemicals such as diethylenetriamine penta (methylene phosphonic acid) (DTPMP) and Diclofenac, exhibit lower climate change (CC) and freshwater ecotoxicity (FET) burdens upon wastewater treatment compared to direct discharge in all country scenarios. Results for Ibuprofen and Acetaminophen (more readily degradable) show that the CC burden depends on the country-specific levels of wastewater treatment. Higher treatment levels lead to lower CC and FET burden compared to direct discharge. WW LCI 2.0 makes it possible to generate complete detailed life cycle inventories and fate analyses for chemicals released to wastewater systems. Our test of the WW LCI 2.0 model with five chemicals illustrates how the model can provide substantially different outcomes, compared to conventional wastewater inventory models, making the inventory dependent upon the atomic composition of the molecules undergoing treatment as well as the country specific wastewater treatment levels.
Land use and land-use changes (LULUC) information is essential to determine the environmental impacts of anthropogenic land-use and conversion. However, existing data sets are either local-scale or they quantify land occupation per land-use type rather than providing information on land-use changes. Here we combined the strengths of the remotely sensed MODIS land cover data set and FAOSTAT land-use data to obtain a database including a collection of 231 country-specific LULUC matrixes, as suggested by the IPCC. We produced two versions of each matrix: version 1, identifying forestland based on canopy cover criteria; version 2, distinguishing primary, secondary, planted forests and permanent crops. The outcome was a first country-based, consistent set of spatially explicit LULUC matrixes. The database facilitates a more holistic assessment of land-use changes, quantifying changes that occur between land classes from 2001 to 2012, providing crucial information for assessing environmental impacts caused by LULUC. The data allow global-scale land-use change analyses, requiring a distinction between land types based not only on land cover but also on land uses. The spatially explicit data set may also serve as a starting point for further studies aiming at determining the drivers of land-use change supported by spatial statistical modeling.